Python + DevOps -> AIOps Learning Progress Heatmap

After being laid off for the third time and going through dozens of interviews, I need to deeply reflect on how to establish myself in this industry.
第三次被裁员后,经历了几十场面试后,需要深入思考自己应该如何立足这个行业。

The demand for AI-related positions is increasing, mainly divided into deploying AI products themselves or using AI to optimize traditional DevOps processes.
AI 相关的岗位要求越来越多,看下来主要分为部署 AI 产品本身,或者使用 AI 优化传统 DevOps 流程。

At the beginning of interviews, I would gloss over with “no project experience in past business” and thought I should solidify fundamentals rather than chase trends.
刚开始面试的时候,我还在以”过往的业务经历中没有项目实践一笔带过”,并且想着应该夯实基础,而不是追赶潮流。

Until interviewing with a top global company - I aced the technical rounds but was challenged during leadership interview: “Don’t talk about AI implementation in your side projects, I want to hear about your learning and integration of new technologies we need” - exposing my lack of AI competencies required for the role.
直到面某全球一流公司时,前面技术都面秒过,却在领导面的时候,被质疑”不要讲 AI 在你的副业中的落地,我想听到的是你对我们需要的新事物的学习和整合”代表的岗位需要的 AI 相关的能力不足。

This was a wake-up call. I always wanted to join companies beyond routine business coding, yet wasn’t prepared for open-ended questions when they came.
这对我造成了极大冲击,总是想找个不是整天光写业务的公司,但真的问开放问题的时候又没准备好。

Interviews test job fit beyond just skills. While I preach about keeping up with times, I default to “never used in production” when challenged.
面试本身是对这个岗位要求的匹配,不只是能力的筛选,平时总是说到要跟上时代不能被淘汰,到了这个时候又搪塞以”工程上没用过”。

This must change. Whether for future interviews or daily learning, isolated self-study won’t cut it anymore.
I have to delete the blog I’ve been writing for the past 4 years and start fresh with checking in for learning. It seems like I can regain that fresh feeling I had when I first started learning.
不能这样了,不管是以后的面试,还是平时学习,闭门造车始终是不行的。
不得不删除之前写了 4年 的 Blog,重新开始打卡学习,看来也能找回刚学习的时候那种新鲜感了。

The learning progress is divided into five stages: Beginner, Explorer, Theorist, Practitioner, and Proficient.

  • Beginner: Installed/Used the component.
  • Explorer: Written an article about it.
  • Theorist: Understood the underlying principles.
  • Practitioner: Applied the component effectively in projects.
  • Proficient: Mastery of the component, capable of teaching and leading others in its use.

the second half of 2025

Abandoned

  • Selenium 异步标签页池:使用 Puppeteer/Playwright 完成,避免业务耦合。
  • StudyFlow 可视化技能树项目:
    1. 先将需要打卡的知识点放到一个 data.json
    2. 再使用 Echarts 渲染一个棵 js 代码中表达的树 (后改成热图)
    3. 进而在 markdown 中被引用
    4. 同时使用 Puppeteer 渲染这段 js 代码,将生成的这棵树的 .png 文件保存到 source/images 目录下,能够用做文章头图,或者被首页引用
    5. 至于打卡部分,就使用 iOS 原生的日历app,再定期总结规划即可,没有必要非要形式上搞一个前后端工程
  • Study Map: 逛 v2ex 时发现 https://roadmap.sh/ 惊为天人,已经完成了我一直想要的游戏化一样的学习指导和进度跟踪,学习最重要的就是不能闭门造车。

Python + DevOps -> AIOps Learning Progress Heatmap
https://gou7ma7.github.io/2025/02/05/heatmap/index/
作者
Roy Lee
发布于
2025年2月5日
许可协议